A critical period for activity-dependent synaptic development during olfactory bulb adult neurogenesis.

نویسندگان

  • Wolfgang Kelsch
  • Chia-Wei Lin
  • Colleen P Mosley
  • Carlos Lois
چکیده

New neurons integrate in large numbers into the mature olfactory bulb circuit throughout life. The factors controlling the synaptic development of adult-born neurons and their connectivity remain essentially unknown. We examined the role of activity-dependent mechanisms in the synaptic development of adult-born neurons by genetic labeling of synapses while manipulating sensory input or cell-intrinsic excitability. Sensory deprivation induced marked changes in the density of input and output synapses during the period when new neurons develop most of their synapses. In contrast, when sensory deprivation started after synaptic formation was complete, input synapses increased in one domain without detectable changes in the other dendritic domains. We then investigated the effects of genetically raising the intrinsic excitability of new neurons on their synaptic development by delivering a voltage-gated sodium channel that triggers long depolarizations. Surprisingly, genetically increasing excitability did not affect synaptic development but rescued the changes in glutamatergic input synapses caused by sensory deprivation. These experiments show that, during adult neurogenesis in the olfactory bulb, synaptic plasticity is primarily restricted to an early period during the maturation of new neurons when they are still forming synapses. The addition of cells endowed with such an initial short-lived flexibility and long-term stability may enable the processing of information by the olfactory bulb to be both versatile and reliable in the face of changing behavioral demands.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical periods in adult neurogenesis and possible clinical utilization of new neurons

CRITICAL PERIODS IN ANIMAL AGE AND IN CELLULAR AGE IN MAMMALS In mammals, sensory and motor experiences during the neonatal and infant stages of growth induce remarkable plastic changes in the structural organization and functional properties of neuronal circuits in the brain. Following this critical period, however, experience-dependent plasticity declines significantly. The term “critical per...

متن کامل

Regulation of Survival and Synaptic Connectivity in the Adult

Although the lifelong addition of new neurons to the olfactory bulb and dentate gyms of mammalian brains is by now an accepted fact, the function of adult-generated neurons still largely remains a mystery. The ability of new neurons to form synapses with preexisting neurons without disrupting circuit function is central to the hypothesized role of adult neurogenesis as a substrate for learning ...

متن کامل

A Subtype-Specific Critical Period for Neurogenesis in the Postnatal Development of Mouse Olfactory Glomeruli

Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes sign...

متن کامل

Role of Rb during Neurogenesis and Axonal Guidance in the Developing Olfactory System

The Retinoblastoma protein, Rb, was shown to regulate distinct aspects of neurogenesis in the embryonic and adult brain besides its primary role in cell cycle control. It is still unknown, however, whether Rb is required for tissue morphogenesis and the establishment of synaptic connections between adjacent tissues during development. We have investigated here the role of Rb during development ...

متن کامل

Consolidation of an Olfactory Memory Trace in the Olfactory Bulb Is Required for Learning-Induced Survival of Adult-Born Neurons and Long-Term Memory

BACKGROUND It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 38  شماره 

صفحات  -

تاریخ انتشار 2009